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For the most general quantum master equations, also called Nakajima–Zwanzig
or non-Markovian equations, we define suitable boundedness conditions on
integral kernels and inhomogeneity terms in order to derive with mathematical
rigor an upper bound on solutions, as required by the von Neumann conditions.
Such equations are of importance for quantum dynamics of open systems with
arbitrary couplings to environment and arbitrary entangled initial states. The
derivation is based on an equivalent coherence-vector representation in finite
dimension n leading to coupled Volterra integro-differential equations of second
kind and convolution type in an (n2 − 1)-dimensional real vector space. As
examples, analytical and numerical model solutions are worked out for 2-level
systems in order to test suitable trial functions for input quantities. All this is
motivated by the fact that exact solutions can hardly be found but appropriate
trial functions may provide a reasonable semiphenomenological description of
complicated quantum dynamics.
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quantum dynamics; entanglement.

Quantum Markovian master equations are successfully applied whenever a
system is weakly coupled to its surroundings and an average time-evolution
starting from a disentangled initial state can be considered on a relatively
large time-scale. Mathematically, the underlying dynamical equations are
coupled linear first-order differential equations with constant coefficients
satisfying well-defined quantum dynamical semigroup properties. (1–4) The
developments in laser physics and mainly the possibility of monitoring time-
evolution on very short scales down to femtoseconds made it clear that the



assumptions underlying the weak-coupling and van Hove limit for
Markovian master equations should be abandoned for a reliable descrip-
tion. For many related physical conditions neither a weak-coupling
assumption without van Hove limit nor a disentangled initial state provides
a realistic approximation. As a striking example where such assumptions
must fail one may mention the particular quantum collapse and revival
dynamics of the cavity damped Jaynes–Cummings model in quantum
optics. (5–9) It has been shown (5, 6) that for relatively long times there is either
strongly varying oscillatory dynamics or, lateron, a chaotically fluctuating
behavior in a quasi-steady state of maximum entropy and, only on extre-
mely long time-scale, cavity damping induces a Markovian type exponen-
tial decay.

If one wants to describe such complicated dynamical details by a
master equation one has to go back to the most general version known as
Nakajima–Zwanzig equation (10) for which detailed derivations are well
documented in the literature (3, 4, 10, 11) but it will be necessary to collect a few
prerequisits. The desired equation of ‘‘non-Markovian’’ type for the density
operator r(t) of an open system S1 reads

ṙ(t)=−i[H̃1 , r(t)]+F
t

0
K(t − s; r(s)) ds+J(t), (1)

where kernel and inhomogeneity are given by

K(t − s; r(s))=Tr2[L eQ L (t − s)Q L(r(s) é w)], (2)

J(t)=Tr2[L eQ L t(W(0) − r(0) é w)]. (3)

The setting is as follows. S1 is coupled to a system S2 via a bounded
interaction V12 appearing in the total Hamiltonian H=H1 é 12+
11 é H2+V12, and H̃1 includes a modification of H1 due to V12. L abbre-
viates the commutator LX=−i[H, X], X ¥ T(H), the set of trace-class
operators in the tensor space H=H1 é H2 associated with the total closed
system S=S1 2 S2. Furthermore, Tr2 denotes the trace in H2, and Q
projects any operator Y ¥ T(H) into QY=Y − Tr2[Y] é w, w being an
arbitrary density operator of S2. Finally, W(0) is a possibly nonfactorizable
(entangled) initial state of S.

Serious difficulties in a further treatment of (1) arise from the nasty
exponentials in (2) and (3) which make the general equation untractable,
even in simple model cases. It should be emphasized that any approxima-
tion procedures are likely to violate the von Neumann conditions of posi-
tivity and trace-normalisation of r(t). Therefore, one is led to take as much
advantage as possible of the exact structure (1–3).
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It is the aim of this note to present a first step in defining conditions to
be imposed on K and J in order to guarantee at least bounded solutions.
These conditions are expected to set useful guidelines for the choice of
parametrized model functions which may provide a first semiphenome-
nological description of experiments. This idea bears some analogy to the
well-known Bloch equations of optical or magnetic resonance where a
parametrization of quantum mechanically consistent equations in terms of
relaxation times 2 T1 \ T2 has proven to be useful even if no ab initio deri-
vation of the latter is known. (4, 12, 13)

First of all, we restrict derivations to a finite-dimensional Hilbert space
H1 with dim(H1)=n < .. Since r(t) is hermitian with Tr1[r(t)]=1 its
matrixelements rik(t)=(ji, r(t) jk) in any orthonormal basis {ji}

n
1 in H1

are defined in terms of N=n2 − 1 real-valued functions of time. It is,
therefore, most convenient to reformulate (1) in a higher-dimensional real
vector space VN by going over to a coherence-vector representation (4, 14) in
terms of infinitesimal generators {Fi}

N
1 of SU(n). A vector v(t)=

{v1(t), v2(t),..., vN(t)}T with real-valued functions of time as components is
then defined by

r(t)=
1
n

1n+ C
N

i=1
vi(t) Fi, (4)

Fi=Fg
i , Tr[Fi]=0, Tr[Fi Fk]=dik, 1 [ i, k [ N. (5)

Most important, the Euclidian norm of v(t) is bounded by

||v(t)||2 [ 1 −
1
n

, (6)

which is trivially required of any solution of (1), unavoidably also of
approximate ones. It follows from (2) that matrixelements of K must be
written as

(ji, K(t − s; r(s)) jj)= C
n

m, n=1
Kmn

ij (t − s) rmn(s), Tr1[K(t − s; r(s)]=0,
(7)

in terms of complex-valued functions {Kmn
ij (y), y \ 0}. Since also

Tr1[J(t)]=0, and only the traceless part of the Hamiltonian matters, we
write

J(t)= C
N

k=1
ek(t) Fk, H= C

N

k=1
hk Fk. (8)
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The systematic transformation of (1) yields the desired final, real vector
form

v̇(t)=A v(t)+F
t

0
C(t − s) v(s) ds+f(t), 0 [ t < ., (9)

where A=−AT with entries given by {hi}
N
1 , and the entries of C are real,

linear combinations of {Kmn
ij }n

1-functions, whereas the components of f(t)
are related to {ei(t)}N

1 , but also to certain integrals over {Kmn
ij }-functions.

We concentrate on the relaxing part of (9) and set A to zero since the skew-
symmetry induces orthogonal transformations which due not affect bound
estimates. This can also be seen from a variation of parameter formula
applied to (9).

Note first that all functions in (9) are continuous. More precisely, the
components fi(t) are defined for [0, .) Q R, and the elements Cik(t − s)
for [0 [ s [ t < .) Q R. Integration yields

v(t)=v(0)+F
t

0
f(u) du+F

t

0
F

u

0
C(u − s) v(s) ds du, (10)

and, after interchanging order of integrations, one obtaines a Volterra
convolution integral equation of second kind, (15)

v(t)=F(t)+F
t

0
R(t − s) v(s) ds, 0 [ t < ., (11)

where

F(t)=v(0)+F
t

0
f(u) du, (12)

R(t − s)=F
t − s

0
C(u) du. (13)

Again, F and R contain only continuous functions on the respective inter-
vals and, consequently, the integral equation (11) admits a unique solu-
tion (16) v(t). Furthermore, we introduce

G(t − s)=−F
.

t − s
C(u) du, (14)

and the constant matrix

Q=F
.

0
C(u) du=−G(0). (15)
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Suppose now the existence of positive constants {a, M, c, L, o} such that
the following semi-inequalities for upper bounds hold,

||eQ(t − u)|| [ Me−a(t − u), 0 [ u [ t < ., (16)

||G(t − s)|| [ Le−c(t − s), 0 [ s [ t < ., (17)

F
t

0
||f(u)|| du [ o, t \ 0. (18)

Under the above assumptions it will be possible to prove that the solutions
v(t) of (11) are restricted by an upper bound that is analytically given by
the introduced constants and the initial condition. To this end, consider
first the identity

d
dt

F
t

0
G(t − s) v(s) ds=−1F

.

0
C(u) du2 v(t)+F

t

0
C(t − s) v(s) ds, (19)

and insert (15) and (19) in (9) to obtain

v̇ − Q v=f(t)+
d
dt

F
t

0
G(t − s) v(s) ds. (20)

Multiplying this equation by e−Qt yields

d
dt

(e−Qtv(t))=e−Qt 3 f(t)+
d
dt

F
t

0
G(t − s) v(s) ds4 , (21)

and subsequent integration from 0 to t gives

e−Qt v(t)=v(0)+F
t

0
e−Qu f(u) du+F

t

0
e−Qu 3 d

du
F

u

0
G(u − s) v(s) ds4 du. (22)

Partial integration of the last term above yields

e−Qt v(t)=v(0)+F
t

0
e−Qu f(u) du+e−Qt F

t

0
G(t − s) v(s) ds

+F
t

0
F

u

0
Q e−Qu G(u − s) v(s) ds du, (23)

and final multiplication by eQt provides a representation suitable for norm
estimates,
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v(t)=eQt v(0)+F
t

0
eQ(t − u)f(u) du+F

t

0
G(t − s) v(s) ds

+F
t

0
F

u

0
Q eQ(t − u)G(u − s) v(s) ds du. (24)

Upon use of (16) a first norm estimate of this equation is given by

||v(t)|| [ M ||v(0)|| e−at+M F
t

0
e−a(t − u) ||f(u)|| du+F

t

0
||G(t − s)|| ||v(s)|| ds

+M ||Q|| F
t

0
F

u

0
e−a(t − u) ||G(u − s)|| ||v(s)|| ds du. (25)

In the last term above the order of integration is interchanged,

F
t

0
F

u

0
e−a(t − u) ||G(u − s)|| ||v(s)|| ds du=e−at F

t

0

3F
t

s
eau ||G(u − s)|| du4 ||v(s)|| ds,

(26)

and, taking into account (24), one obtaines

F
t

0
F

u

0
e−a(t − u) ||G(u − s)|| ||v(s)|| ds du [ Le−at F

t

0
ecs 3F

t

s
e (a − c) u du4 ||v(s)|| ds,

=
L

a − c
F

t

0
(e−c(t − s) − e−a(t − s)) ||v(s)|| ds.

(27)

Inserting (27) in (25) and replacing e−a t and e−a (t − u), u [ t, by 1 in the first
two terms leads to the inequality

||v(t)|| [ M(||v(0)||+o)+F
t

0
f(t − s) ||v(s)|| ds, (28)

where

f(y)=L e−c y+
M ||Q|| L

a − c
(e−c y − e−a y). (29)

Due to Gronwall’s inequality (16) one can rewrite (28) as

||v(t)|| [ M(||v(0)||+o) exp 5F
t

0
f(y) dy6 . (30)
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Note that f(y) \ 0 for any values of {a, c}, with positive integral

k(t)=F
t

0
f(y) dy=

L
c
11+

M ||Q||
a − c

2 (1 − e−c t) −
M ||Q|| L
a(a − c)

(1 − e−a t) \ 0. (31)

Therefore, the right-hand side of (28) is majorized by taking the limit t Q .,

k(t) [ lim
y Q .

k(y)=
L
ac

(a+M ||Q||). (32)

Finally, we have the following desired

Theorem. Subject to conditions (16–18) the solutions v(t) of the
vector representation (9), equivalent to the non-Markovian quantum
master equation (1), are bounded by

||v(t)|| [ M(||v(0)||+o) exp 5 L
ac

(a+M ||Q||)6 . (33)

Two interpretations of this result must now be discussed. First of all,
for sufficiently small initial norm ||v(0)|| and correspondingly modest values
of constants (16–18) the required exact bound (6) will not be violated.
Physically, this is a realistic scenario since neigther in Markovian (4) nor in
non-Markovian (9) cases is it generally true that the dynamics is exclusively
contractive in the sense ||v(t)|| [ ||v(0)|| for all initial conditions. This prop-
erty is only strictly required for initial states very close to pure ones, all of
them with maximum ||v(0)||=(1 − 1/N). Second, even for the latter cases
our present experience from numerous numerical tests has shown that
result (33) is very useful. As a matter of fact, for a given choice of {K, J}
with corresponding parameters (16–18) such that, roughly, ||v(t)|| [

2 (1 − 1/N) is fulfilled, we find from exact numerical calculations strict
contractivity for maximum initial norm. The obviously somewhat too large
bound in (33) is certainly due to the techniques applied in the derivation
since norm estimates may considerably overestimate values as obtained
from more refined methods. In summary, it is for all the above mentioned
reasons that (33) turns out to provide a useful guideline in conveiving and
testing trial functions.

As an illustration we consider 2 examples for a 2-level system
(n=2; N=3). For a reliable numerical solution of Eq. (9) we have devel-
oped a very accurate procedure based on the Adams–Moulton method (17–19)

of order 3.
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(I) A simple choice of a diagonal kernel and an inhomogeneous term
is given by

R(t)=−xe−l t1, f(t)=o = 2
3 p

e−t2
(1 , 2 , −1)T. (34)

The spectral norms are exactly found as

||G(t)||=
x
l

e−l t, ||Q||=
x
l

, ||eQ t||=e−x
l

t, (35)

yielding a bound ||v(t)|| [ (||v(0)||+o) exp(2 x/l2). In order to favor the
central state for long times the value of o must be small, similar to the
Markovian case. (4) The choice {o=0.01, x=1, l=5} then gives us
||v(t)|| [ 0.777. Figure 1 shows that the numerical solution for these
parameters even respects ||v(t)|| [ ||v(0)||=1/`2=0.707 for the maximally
admitted value of initial vector length. Furthermore, adding a Hamiltonian
contribution as, e.g.,

A=
1
2
R 0 − 2 1

2 0 − 1

− 1 1 0

S , (36)

introduces oscillations which, however, do not affect the norm decay.
(II) Consider a more general kernel like, for instance,

C(t)=
1
20
R − sech(t) e−t cos(5 t) 1

2 [1+100 t2]−1

e−t cos(5 t) − 2 [1+t2]−2 1
4 e−t sin2(5 t)

1
2 [1+100 t2]−1 1

4 e−t sin2(5 t) − 2 e−t

S , (37)
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Fig. 1. Time-dependence of the 3 coherence-vector components as solutions of (9) for input
quantities as defined in (34) and (36) with initial conditions v1(0)=−v3(0)=`2/3,
v2(0)=1/3 `2. The norm obviously satisfies ||v(t)|| [ ||v(0)||.
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Fig. 2. Time-dependence of the 3 coherence-vector components as solutions of (9) for input
quantities as defined in (37) and (38) with initial conditions v1(0)=−v3(0)=`2/3,
v2(0)=1/3 `2. The norm obviously satisfies ||v(t)|| [ ||v(0)||.

together with the same inhomogeneity as in (I). Here, the time-dependent
norms have been calculated numerically, and from exponential fits one
deduces the parameter values {L=||Q||=0.102, c=0.9, M=1, a=0.075}
with resulting bound ||v(t)|| [ 0.937. Again, if the dynamics includes an
additional Hamiltonian contribution

A=
1
10
R 0 − 1 3

1 0 − 6

− 3 6 0

S , (38)

and even an initial state vector of maximum length is chosen, the time-
dependent vector norm exhibits essentially the same decreasing behavior as
for A=0, as is shown in Fig. 2.

In conclusion, conditions (16–18) are very helpful for testing suitable
trial functions for kernel and inhomogeneity in Eq. (9). One should notice
that solutions bounded by (6) provide a density matrix which satisfies all
von Neumann conditions only in case of n=2. For n \ 3 this bound is
necessary but not yet completely sufficient to guarantee positivity. Even if
the latter is likely to hold an extra test should be made. In brief, for n=2
this is due to a 1-1-correspondence between the length of the coherence-
vector and the only free eigenvalue of the densiy matrix, whereas for n \ 3
there are two or more free eigenvalues, and uniqueness is lost. Of course,
state space is convex but for n \ 3 it is no longer a full Bloch sphere as is
the case for n=2. It is for this reason that a more general formulation of
inequalities on input quantities is urgent in order to simultaneously
guarantee positivity of the density matrix. Some successful progress in this
direction seems possible and is currently under investigation.
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